Module 7

 0    58 cartonașe    dklekowski
descarcă mp3 printează joacă Testează-te
 
Întrebare English Răspuns English
transaction data
începe să înveți
booking a hotel, buying tickets, doing groceries
Transaction Processing Systems
începe să înveți
systems that record data on fundamental operations within the company; may be connected to government agencies, useful for management, used to support organisations from the inside; what happened with the customer's order? how many items are in stock?
Batch processing
începe să înveți
data is kept at temporary storage and processed as a single unit at a time; it enables companies to shift processing to time when computing resources are less busy; ex: money transfer between banks
Online Transaction Processing (OLTP)
începe să înveți
data is processed immediately in real-time; current state of the system is always reflected; webshops, hotel and airline booking
Decision Support Systems
începe să înveți
serve middle management and non routine decision-making; have analytical capability; what is the impact on production schedule if December sales doubled?
Executive Support Systems
începe să înveți
support senior management, non-routine decisions, requiring judgement, evaluation; incorporate data about external events as well as summarised information from internal MIS and DSS; ex: Digital dashboard with real-time view of financial performance
data warehouse
începe să înveți
collect and store data from several core transactional systems across the neat organization; data is consolidated, but can't be altered; they provide tools for querying and analysis; serves as organisational memory
data marts
începe să înveți
subsets of data stored in a data warehouse; contain highly focused portion of the organisation's data; designed to support work on a specific business challenge by a specific population of users
data lakes
începe să înveți
storage of all the data in a non-standardised fashion that may be used later on; ex: Casino with patterns identification and targeting most profitable customers
Online Analytical Processing (OLAP)
începe să înveți
transaction-level data stored in relational databases is aggregated and summarised; results of analysis are stored in special databases (data cubes); data cubes structure results across multiple dimensions (space, products, time period)
data mining
începe să înveți
the use of specific algorithms to identify hidden patterns in and to fit models to large data sets; more discovery driven; patterns discovered by DM: associations, clusters, sequences, relationships
associations
începe să înveți
occurrences linked to a single event
clusters
începe să înveți
a group of customers that share certain characteristics and behave in a similar way
relationships
începe să înveți
dependences
sequences
începe să înveți
time series
support
începe să înveți
the fraction of transactions that contain a certain set of items X
Confidence
începe să înveți
the fraction of transactions that contain Y among those transaction that contain X
Big Data
începe să înveți
data mining techniques help to conduct fast analyses on large data sets; increasing infusion of info technology into products, devices and our daily lives has led to collection of incredible amounts of data; Volume, Velocity, Variety and Veracity
Volume in Big Data
începe să înveți
the simple size of a dataset that needs to be processed
Velocity in Big Data
începe să înveți
the speed with which new data is generated and needs to be processed
Variety in Big Data
începe să înveți
the different formats and features of data that need to be processed (relational databases, documents, photos videos, spatial and temporal aspects)
Veracity in Big Data
începe să înveți
the reliability of the data
neural networks
începe să înveți
neural networks are usually black box methods, namely extremely hard to quantify the impact of a particular input variable on the outcome
hierarchy of data
începe să înveți
bit, byte, field, record, file
problems with traditional file environment
începe să înveți
data redundancy; program-data dependence; lack of flexibility; poor security; lack of data sharing and availability
DBMS
începe să înveți
Database Management Systems; it enables an organisation to centralise data, manage it efficiently and provide access to the stored data by application programs, acts as interface between application porgams and the data files; it reduces data redundancy
Relational DBMS
începe să înveți
represents data as two-dimensional tables -> SQL; operations: Select, Join, Project; tools for accessing and manipulating information also called manipulation language (SQL)
normalisation
începe să înveți
the process of creating small, stable yet flexible and adaptive data structures from complex groups of data
blockchain
începe să înveți
a distributed database technology that enables firms and organisations to create and verify transactions on a network nearly instantaneously without a central authority
blockchain networks
începe să înveți
it drastically reduces the costs of verifying users, validating transactions and the risks of storing and processing transaction information across thousands of firms
Business Intelligence Infrastructure
începe să înveți
data warehouse, data marts, Hadoop, in-memory computing; analytical platforms
Hadoop
începe să înveți
breaks the big data problem into sub-problems, distributes them among to thousand of inexpensive computer processing nodes and combines to a smaller data set
In-Memory Computing
începe să înveți
it relies on computer's main memory RAM, it makes it possible for very large sets of data to reside entirely in memory
Analytical Platforms
începe să înveți
include in-memmory systems and NoSQL databses
enterprise applications
începe să înveți
systems for linking the enterprise, span functional areas, execute business processes across the firm, include all level of management
4 enterprise applications
începe să înveți
enterprise systems; supply chain management, customer relationship management, knowledge management systems
enterprise systems
începe să înveți
based on a suite of integrated software modules and common central database; DB collects data from many divisions and departments in a firm and from a large number of key business processes in manufacturing; accounting&finance, sales&marketing and HR
value provided by ERP
începe să înveți
increasing operational efficiency; providing firm wide information to help managers make better decisions
Supply Chain Management Systems
începe să înveți
answer to the problems of supply chain complexity and scale; bullwhip effect; push-based and pull-based model
bullwhip effect
începe să înveți
information about demand for a product gets distorted as it possess from one entity to the next across supply chain; it can be tamed by reducing uncertainties and SCM can help with that
push-based model
începe să înveți
schedules based on forecasts of demand
pull-based model
începe să înveți
demand driven, build-to-order, customer orders trigger events in the supply chain
SCM provide value by
începe să înveți
enabling firms to streamline both their internal and external supply chain processes and provide management with more accurate info about what to produce, store and move; increases sales and reduces costs
Customer Relationship Management Systems
începe să înveți
capture and integrate customer data from all over the organisation, consolidate and distribute to various systems and customer touch points (email phone etc.); SFA, customer service, Marketing
SFA
începe să înveți
Sales Force Automation; helps sales staff increase productivity by focusing sales efforts on the most profitable customers
customer service in CRM
începe să înveți
they increase the effienicency of call centres, help desks and customer support staff
Marketing at CRM
începe să înveți
CRM provides capabilities for capturing prospect and customer data
Business Value of CRM
începe să înveți
increased customer satisfaction; reduced direct marketing costs; more effective marketing; lower costs for customer acquisition and retention
Types of decisions
începe să înveți
unstructured; structured; semistructured
unstructured decisions
începe să înveți
decision-maker must provide judgement and evaluation to solve a problem; novel, important and not routine decisions -> Senior Management; long-term goals
structured decisions
începe să înveți
repetitive, routine and involve definite procedures for handling them -> operational management; ex: restock inventory
semistructured decisions
începe să înveți
only part of a problem has a clear-cut answer provided by an accepted procedure -> Middle Management; design marketing plan or new website
Decision Making Process
începe să înveți
Intelligence (Problem discovery) -> Design (Solution discovery) -> Choice (choosing solution) -> Implementation (solution testing)
managerial roles
începe să înveți
interpersonal, informational, decisional
interpersonal role
începe să înveți
figurehead, leader, liaison; support systems: telepresence, social network, smartphones
informational role
începe să înveți
nerve center, disseminator, spokesperson; support systems: MIS, ESS, Texting, email, webinars, social networks
decisional role
începe să înveți
entrepreneur, disturbance handler, resource allocator, negotiator; support systems: business intelligence, DSS or none
Business Intelligence
începe să înveți
infrastructure for warehousing, integrating, reporting, analysing data that come from the business environment (big data)

Trebuie să te autentifici pentru a posta un comentariu.